Heat Conduction of Single-walled Carbon Nanotube in Various Environments
نویسندگان
چکیده
Some of our recent studies on the heat conduction of single-walled carbon nanotubes (SWNTs) using molecular dynamics (MD) simulations are reported. The length-dependence of pure SWNTs is investigated in a range of nanotube lengths up to 3.2μm. Non-equilibrium MD simulations were performed by minimizing the thermal boundary resistance between the thermally controlled layers and the rest of the nanotube, which was found to have a significant influence on the measured thermal conductivity. Furthermore, the heat conduction is investigated in more practical situations under the influence of inter-material interactions and intrinsic thermal resistances due to hetero-tube junctions.
منابع مشابه
Single Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach
The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...
متن کاملDiffusive-Ballistic Heat Conduction along a Single-Walled Carbon Nanotube
The diffusive-ballistic heat conduction of finite-length single-walled carbon nanotubes has been studied by means of nonequilibrium molecular dynamics simulations. The length dependence of thermal conductivity [1] is quantified for a range of nanotube lengths up to 1.6 μm at room temperature. A gradual transition from nearly pure ballistic to diffusive-ballistic heat conduction was identified f...
متن کاملNon-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations
Non-stationary heat conduction in a single-walled carbon nanotube was investigated by applying a local heat pulse with duration of sub-picoseconds. The investigation was based on classical molecular dynamics simulations, where the heat pulse was generated as coherent fluctuations by connecting a thermostat to the local cell for a short duration. The heat conduction through the nanotube was obse...
متن کاملMD Simulation of Phonon Transport in Single-Walled Carbon Nanotubes
We have simulated the heat conduction characteristics of finite length single walled carbon nanotubes (SWNTs) with the molecular dynamics method [1-3] with Tersoff-Brenner bond order potential. Temperature at each end of a SWNT was controlled by the phantom technique, and the thermal conductivity was calculated with Fourier’s law from the measured temperature gradient and the energy budgets in ...
متن کاملA Molecular Dynamics Simulation of Heat Conduction in Finite Length SWNTs
The heat conduction in finite length single walled carbon nanotubes (SWNTs) was simulated by the molecular dynamics method with the Tersoff-Brenner bond order potential. Temperature at each end of a SWNT was controlled by the phantom technique, and the thermal conductivity was calculated from the measured temperature gradient and the energy budgets in phantom molecules. The thermal conductivity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006